Add like
Add dislike
Add to saved papers

Baroreflex gain and vasomotor sympathetic modulation in resistant hypertension.

PURPOSE: The aim of this study was to determine the gain and latency of arterial baroreflex control of heart rate in patients with resistant hypertension compared to patients with essential hypertension and normotensive subjects.

METHODS: Eighteen patients with resistant hypertension (56 ± 10 years, mean of four antihypertensive drugs), 17 patients with essential hypertension (56 ± 11 years, mean of two antihypertensive drugs), and 17 untreated normotensive controls (50 ± 15 years) were evaluated by spectral analysis of the spontaneous fluctuations of arterial pressure (beat-to-beat) and heart rate (ECG). This analysis estimated vasomotor and cardiac autonomic modulations, respectively. The transfer function analysis quantified the gain and latency of the response of output signal (RR interval) per unit of spontaneous change of input signal (systolic arterial pressure).

RESULTS: The gain was similarly lower in patients with resistant hypertension and patients with essential hypertension in relation to normotensive subjects (4.67 ± 2.96 vs. 6.60 ± 3.30 vs. 12.56 ± 8.81 ms/mmHg; P < 0.01, respectively). However, the latency of arterial baroreflex control of heart rate was significantly higher only in patients with resistant hypertension when compared to patients with essential hypertension and normotensive subjects (-4.01 ± 3.19 vs. -2.91 ± 2.10 vs. -1.82 ± 1.09 s; P = 0.04, respectively). In addition, the index of vasomotor sympathetic modulation was significantly increased only in patients with resistant hypertension when compared to patients with essential hypertension and normotensive subjects (4.04 ± 2.86 vs. 2.65 ± 1.88 vs. 2.06 ± 1.70 mmHg2 ; P < 0.01, respectively).

CONCLUSIONS: Patients with resistant hypertension have reduced gain and increased latency of arterial baroreflex control of heart rate. These patients also have increased vasomotor sympathetic modulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app