JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Blue light effect on retinal pigment epithelial cells by display devices.

Blue light has high photochemical energy and induces cell apoptosis in retinal pigment epithelial cells. Due to its phototoxicity, retinal hazard by blue light stimulation has been well demonstrated using high intensity light sources. However, it has not been studied whether blue light in the displays, emitting low intensity light, such as those used in today's smartphones, monitors, and TVs, also causes apoptosis in retinal pigment epithelial cells. We attempted to examine the blue light effect on human adult retinal epithelial cells using display devices with different blue light wavelength ranges, the peaks of which specifically appear at 449 nm, 458 nm, and 470 nm. When blue light was illuminated on A2E-loaded ARPE-19 cells using these displays, the display with a blue light peak at a shorter wavelength resulted in an increased production of reactive oxygen species (ROS). Moreover, the reduction of cell viability and induction of caspase-3/7 activity were more evident in A2E-loaded ARPE-19 cells after illumination by the display with a blue light peak at a shorter wavelength, especially at 449 nm. Additionally, white light was tested to examine the effect of blue light in a mixed color illumination with red and green lights. Consistent with the results obtained using only blue light, white light illuminated by display devices with a blue light peak at a shorter wavelength also triggered increased cell death and apoptosis compared to that illuminated by display devices with a blue light peak at longer wavelength. These results show that even at the low intensity utilized in the display devices, blue light can induce ROS production and apoptosis in retinal cells. Our results also suggest that the blue light hazard of display devices might be highly reduced if the display devices contain less short wavelength blue light.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app