Add like
Add dislike
Add to saved papers

Calpain 1 regulates TGF-β1-induced epithelial-mesenchymal transition in human lung epithelial cells via PI3K/Akt signaling pathway.

Cell proliferation, transformation, and epithelial-mesenchymal transition (EMT) are key processes involved in the development of idiopathic pulmonary fibrosis (IPF). This study investigated the regulatory factors and signaling pathways that mediate EMT in the human type II alveolar epithelial A549 cell line. A549 cells were cultured in RPMI-1640 medium and allocated to the following four groups: blank control group or treated with transforming growth factor-β1 (TGF-β1), TGF-β1 + PD 150606 (a calpain 1 inhibitor), or PD 150606. We examined E-cadherin (E-cad), α-smooth muscle actin (α-SMA), and calpain 1 mRNA transcript and protein expression levels in these four groups by performing RT-PCR and western blot analyses. The results indicated that TGF-β1 treatment significantly downregulated E-cad and upregulated α-SMA expression compared with that of the blank control group (P<0.05). TGF-β1 also enhanced calpain 1 expression compared with that of the blank control group (P<0.05). By contrast, treatment with the calpain 1 inhibitor PD 150606 increased E-cad expression and decreased α-SMA expression. Furthermore, PD 150606 treatment antagonized TGF-β1-mediated increase in Akt/phospho-Akt in A549 epithelial cells. However, TGF-β1-induced ETM was not correlated with the ERK and JNK signaling pathways. These combined results indicate that calpain 1 could regulate EMT in TGF-β1-treated A549 epithelial cells via the PI3K/Akt signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app