Add like
Add dislike
Add to saved papers

RSK activation via ERK modulates human colon cancer cells response to PTHrP.

Parathyroid hormone-related peptide (PTHrP) is associated with several human cancers such as colon carcinoma. This disease is a complex multistep process that involves enhanced cell cycle progression and migration. Recently we obtained evidence that in the human colorectal adenocarcinoma Caco2 cells, exogenous PTHrP increases the proliferation and positively modulates cell cycle progression via ERK1/2, p38 MAPK and PI3K. The purpose of this study was to explore if the serine/threonine kinase RSK, which is involved in the progress of many cancers and it is emerging as a potential therapeutic target, mediates PTHrP effects on cancer colon cells. Western blot analysis revealed that PTHrP increases RSK phosphorylation via ERK1/2 signaling pathway but not through p38 MAPK. By performing subcellular fractionation, we found that the peptide also induces the nuclear localization of activated RSK, where many of its substrates are located. RSK participates in cell proliferation, in the upregulation of cyclin D1 and CDK6 and in the downregulation of p53 induced by PTHrP. Wound healing and transwell filter assays revealed that cell migration increased after PTHrP treatment. In addition, the hormone increases the protein expression of the focal adhesion kinase FAK, a regulator of cell motility. We observed that PTHrP induces cell migration and modulates FAK protein expression through ERK/RSK signaling pathway but not via p38 MAPK pathway. Finally, in vivo studies revealed that the hormone activates RSK in xenografts tumor. Taken together, our findings provide new insights into the deregulated cell cycle and migration that is characteristic of tumor intestinal cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app