Add like
Add dislike
Add to saved papers

How can a recurrent neurodynamic predictive coding model cope with fluctuation in temporal patterns? Robotic experiments on imitative interaction.

The current paper examines how a recurrent neural network (RNN) model using a dynamic predictive coding scheme can cope with fluctuations in temporal patterns through generalization in learning. The conjecture driving this present inquiry is that a RNN model with multiple timescales (MTRNN) learns by extracting patterns of change from observed temporal patterns, developing an internal dynamic structure such that variance in initial internal states account for modulations in corresponding observed patterns. We trained a MTRNN with low-dimensional temporal patterns, and assessed performance on an imitation task employing these patterns. Analysis reveals that imitating fluctuated patterns consists in inferring optimal internal states by error regression. The model was then tested through humanoid robotic experiments requiring imitative interaction with human subjects. Results show that spontaneous and lively interaction can be achieved as the model successfully copes with fluctuations naturally occurring in human movement patterns.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app