Add like
Add dislike
Add to saved papers

Genome-scale metabolic modelling common cofactors metabolism in microorganisms.

The common cofactors ATP/ADP, NAD(P)(H), and acetyl-CoA/CoA are indispensable participants in biochemical reactions in industrial microbes. To systematically explore the effects of these cofactors on cell growth and metabolic phenotypes, the first genome-scale cofactor metabolic model, icmNX6434, including 6434 genes, 1782 metabolites, and 6877 reactions, was constructed from 14 genome-scale metabolic models of 14 industrial strains. The origin, consumption, and interactions of these common cofactors in microbial cells were elucidated by the icmNX6434 model, and they played important roles in cell growth. The essential cofactor modules contained 2480 genes and 2948 reactions; therefore, improving cofactor biosynthesis, directing these cofactors into essential metabolic pathways, as well as avoiding cofactor utilization during byproduct biosynthesis and futile cycles, are three ways to increase cell growth. The effects of these common cofactors on the distribution and rate of the carbon flux in four universal modes, as well as an optimized metabolic flux, could be obtained by manipulating cofactor availability and balance. Significant changes in the ATP, NAD(H), NADP(H), or acetyl-CoA concentrations triggered relevant metabolic responses to acidic, oxidative, heat, and osmotic stress. Globally, the model icmNX6434 provides a comprehensive platform to elucidate the physiological effects of these cofactors on cell growth, metabolic flux, and industrial robustness. Moreover, the results of this study are a further example of using a consensus genome-scale metabolic model to increase our understanding of key biological processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app