JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Manipulating Surface States of III-V Nanowires with Uniaxial Stress.

Nano Letters 2017 May 11
III-V compound semiconductors are indispensable materials for today's high-end electronic and optoelectronic devices and are being explored for next-generation transistor logic and quantum technologies. III-V surfaces and interfaces play the leading role in determining device performance, and therefore, methods to control their electronic properties have been developed. Typically, surface passivation studies demonstrated how to limit the density of surface states. Strain has been widely used to improve the electronic transport properties and optoelectronic properties of III-Vs, but the potential of this technology to modify the surface properties still remains to be explored. Here we show that uniaxial stress induces a shift in the energy of the surface states of III-V nanowires, modifying their electronic properties. We demonstrate this phenomenon by modulating the conductivity of InAs nanowires over 4 orders of magnitude with axial strain ranging between -2.5% in compression and 2.1% in tension. The band bending at the surface of the nanostructure is modified from accumulation to depletion reversibly and reproducibly. We provide evidence of this physical effect using a combination of electrical transport measurement, Raman spectroscopy, band-structure modeling, and technology computer aided design (TCAD) simulations. With this methodology, the deformation potentials for the surface states are quantified. These results reveal that strain technology can be used to shift surface states away from energy ranges in which device performance is negatively affected and represent a novel route to engineer the electronic properties of III-V devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app