Add like
Add dislike
Add to saved papers

Fraxin Prevents Chemically Induced Hepatotoxicity by Reducing Oxidative Stress.

Fraxin isolated from Acer tegmentosum is reported to exert potent anti-oxidative stress action. However, pharmacological activities of fraxin remain to be elucidated. This study investigated the potential hepatoprotective effects of fraxin and the underlying signaling mechanism involved. Treatment with fraxin significantly lowered the serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in a CCl₄-induced hepatotoxicity rat model. In the fraxin-treated group, glutathione (GSH) significantly increased, while the malondialdehyde (MDA) in the liver significantly decreased. Fraxin also showed radical-scavenging activity. Furthermore, it significantly reduced the t-BHP-induced cytotoxicity and production of reactive oxygen species (ROS) in Hep G2. Fraxin protected Hep G2 cells through Nrf2 pathway-dependent HO-1 expression. The results of this study indicate that fraxin shows potent hepatoprotective effects in vitro and in vivo, presumably through direct antioxidant activity and the Nrf2-mediated antioxidant enzyme system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app