Add like
Add dislike
Add to saved papers

Structure-Activity Relationship of Membrane-Targeting Cationic Ligands on a Silver Nanoparticle Surface in an Antibiotic-Resistant Antibacterial and Antibiofilm Activity Assay.

To explore the structure-activity relationship of membrane-targeting cationic ligands on a silver nanoparticle surface in an antibiotic-resistant antibacterial and antibiofilm activity assay, a series of functionalized silver nanocomposites were synthesized. Tuning the structural configuration, molecular weight, and side-chain length of the cationic ligands on the nanoparticle surface provided silver nanocomposites with effective antibacterial activity against both antibiotic-resistant Gram-negative and Gram-positive bacteria, including bacterial biofilms. These silver nanocomposites did not trigger hemolytic activity. Significantly, the bacteria did not develop resistance to the obtained nanocomposites even after 30 generations. A study of the antibacterial mechanism confirmed that these nanocomposites could irreversibly disrupt the membrane structure of bacteria and effectively inhibit intracellular enzyme activity, ultimately leading to bacterial death. The silver nanocomposites (64 μg/mL) could eradicate 80% of an established antibiotic-resistant bacterial biofilm. The strong structure-activity relationship toward antibacterial and antibiofilm activity suggests that variations in the conformational property of the functional ligand could be valuable in the discovery of new nano-antibacterial agents for treating pathogenic bacterial infections.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app