Add like
Add dislike
Add to saved papers

Fate and Transformation of CuO Nanoparticles in the Soil-Rice System during the Life Cycle of Rice Plants.

Agricultural soil is gradually becoming a primary sink for metal-based nanoparticles (MNPs). The uptake and accumulation of MNPs by crops may contaminate food chain and pose unexpected risks for human health. Here, we investigated the fate and transformation of CuO nanoparticles (NPs) in the soil-rice system during the rice lifecycle. The results show that at the maturation stage, 1000 mg/kg CuO NPs significantly decreased redox potential by 202.75 mV but enhanced electrical conductivity by 497.07 mS/cm compared to controls. Moreover, the bioavailability of highest CuO NPs in the soil was reduced by 69.84% along with the plant growth but then was significantly increased by 165% after drying-wetting cycles. Meanwhile, CuO and Cu combined with humic acid were transformed to Cu2S and Cu associated with goethite by X-ray absorption near edge structure analysis. Additionally, CuO NPs had an acute negative effect on the plant growth than bulk particles, which dramatically reduced the fresh weight of grains to 6.51% of controls. Notably, CuO NPs were found to be translocated from soil to plant especially to the chaff and promoted the Cu accumulation in the aleurone layer of rice using micro X-ray fluorescence technique, but could not reach the polished rice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app