Add like
Add dislike
Add to saved papers

Ion Separation in Air Using a Three-Dimensional Printed Ion Mobility Spectrometer.

Analytical Chemistry 2017 April 14
The performance of a small, plastic drift tube ion mobility spectrometer (DT-IMS) is described. The IMS was manufactured using three-dimensional (3D) printing techniques and operates in the open air at ambient pressure, temperature, and humidity. The IMS housing and electrodes were printed from nonconductive polylactic acid (PLA, housing) and conductive polyethylene terephthalate glycol-modified polymer containing multiwalled carbon nanotubes (PETG-CNT, electrodes). Ring electrodes consisting of both an inner disk and an outer ring were used to prevent neutral transmission while maximizing ion transmission. As a stand-alone instrument, the 3D printed IMS is shown to achieve resolving powers of between 24 and 50 in positive ion mode using tetraalkylammonium bromide salts (TAA), benzylamines (mono-, di-, and tri-), and illicit drugs (MA, MDEA, and haloperidol). Resolving powers of between 29 and 42 were achieved in negative ion mode using sodium alkyl sulfates (C8, C12, C16, and C18). Reduced ion mobilities of TAA cations (C2-C8) were calculated at 14% relative humidity in air to be 1.36, 1.18, 1.03, 0.90, 0.80, 0.73, and 0.67, respectively. The effect of humidity on reduced ion mobilities of TAA cations is discussed. 3D printing is shown to be a quick and cost-effective way to produce small IMS instruments that can compete in performance with conventionally manufactured IMS instruments that also operate in the open air. An important difference between this IMS and other instruments is the absence of a counter gas flow.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app