JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of Isomerization on Excited-State Dynamics of Carotenoid Fucoxanthin.

Ultrafast transient absorption spectroscopy and single-wavelength anisotropy measurements were used to study the effect of isomerization on the excited-state properties of fucoxanthin in polar and nonpolar solvents. The excitation wavelengths were 477 nm for all-trans-fucoxanthin, and 333 and 477 nm for cis-fucoxanthin. All transient absorption spectra of the fucoxanthin isomers in polar solvents show intramolecular charge transfer (ICT) state features, typical for carbonyl carotenoids. Global analysis of the data requires an additional fitting component, originated from the presence of blue and red forms of fucoxanthin in a polar protic solvent. Here we demonstrate that the ICT state decays faster than the S1 state, due to the significant contribution of the red form to the ICT state dynamics. The isomerization does not affect the S1 lifetime, but induces a larger difference between the S1 - and ICT-state lifetimes in cis-fucoxanthin, which is likely caused by alterations of ICT coupling to either the S1 or S0 states; the S*-state signal is more pronounced for cis-isomers in a nonpolar solvent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app