Add like
Add dislike
Add to saved papers

Cytosolic and Chloroplastic DHARs Cooperate in Oxidative Stress-Driven Activation of the Salicylic Acid Pathway.

The complexity of plant antioxidative systems gives rise to many unresolved questions. One relates to the functional importance of dehydroascorbate reductases (DHARs) in interactions between ascorbate and glutathione. To investigate this issue, we produced a complete set of loss-of-function mutants for the three annotated Arabidopsis ( Arabidopsis thaliana ) DHARs. The combined loss of DHAR1 and DHAR3 expression decreased extractable activity to very low levels but had little effect on phenotype or ascorbate and glutathione pools in standard conditions. An analysis of the subcellular localization of the DHARs in Arabidopsis lines stably transformed with GFP fusion proteins revealed that DHAR1 and DHAR2 are cytosolic while DHAR3 is chloroplastic, with no evidence for peroxisomal or mitochondrial localizations. When the mutations were introduced into an oxidative stress genetic background ( cat2 ), the dhar1 dhar2 combination decreased glutathione oxidation and inhibited cat2 -triggered induction of the salicylic acid pathway. These effects were reversed in cat2 dhar1 dhar2 dhar3 complemented with any of the three DHARs. The data suggest that (1) DHAR can be decreased to negligible levels without marked effects on ascorbate pools, (2) the cytosolic isoforms are particularly important in coupling intracellular hydrogen peroxide metabolism to glutathione oxidation, and (3) DHAR-dependent glutathione oxidation influences redox-driven salicylic acid accumulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app