Add like
Add dislike
Add to saved papers

Effect of Isoflurane Anesthesia on Circadian Metabolism and Physiology in Rats.

Isoflurane anesthesia alters the blood levels of several neuroendocrine hormones associated with normal metabolism and physiology and increases stress, but the effect of brief CO2 anesthesia on these parameters is unknown. In this study, we examined the effects of isoflurane (4%) compared with brief CO2 (70% CO2, 30% air) anesthesia on circadian rhythms of plasma measures of physiology and metabolism. Adult male Sprague-Dawley rats (Crl:SD; n = 6 per group) were maintained on a 12:12-h light:dark (300 lx; lights on, 0600) photoperiod. After 1 wk of acclimation, a series of 6 low-volume blood draws were collected by cardiocentesis under anesthesia using isoflurane (10 min or less) compared with CO2 (1 min or less) at a single circadian time point every 4 d (0400, 0800, 1200, 1600, 2000, or 2400) over 3 wk to assess arterial blood glucose, lactic acid, and potassium and plasma melatonin, leptin, insulin, total fatty acids, and corticosterone concentrations. Results revealed that plasma levels (mean ± SEM) of melatonin were low (11 ± 1 pg/mL) during the light phase in both groups but were significantly lower during the dark phase in the isoflurane group (48 ± 6 pg/mL) compared with the CO2 group (162 ± 18 pg/mL). In addition, prominent circadian rhythms of arterial plasma levels of corticosterone, glucose, total fatty acids, lactic acid, and potassium were altered in the isoflurane group compared with the CO2 group. These findings demonstrate that the normal circadian rhythms of endocrine physiology and metabolism observed during brief CO2 anesthesia in rats are markedly disrupted by isoflurane anesthesia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app