Add like
Add dislike
Add to saved papers

The histone demethylase lysine-specific demethylase-1-mediated epigenetic silence of KLF2 contributes to gastric cancer cell proliferation, migration, and invasion.

Gastric cancer is one of the most common malignancies and leading causes of cancer-related death worldwide. An increasing number of evidence has revealed that gastric tumorigenesis is a multistage pathological state, and epigenetic alterations are considered to play critical roles in the etiology of gastric cancer. Lysine-specific demethylase-1, a histone demethylase, has been linked to malignancy in several human cancers and considered to epigenetically regulate many tumor suppressor genes during tumorigenesis and cancer progression. However, its role and underlying targets in gastric cancer are still unclear. In this study, we detected the lysine-specific demethylase-1 expression level in gastric cancer tissues and cell lines and investigated the function and mechanism of lysine-specific demethylase-1 in the gastric cancer. The in vitro analysis shows that knockdown of lysine-specific demethylase-1 significantly inhibits gastric cancer cell proliferation, migration, and invasion and induces cell cycle G1 phase arrest and cell apoptosis. In vivo assays determine that lysine-specific demethylase-1 downregulation represses gastric cancer cell tumorigenesis. Mechanistic investigation reveals that tumor suppressor KLF2 is a key downstream target of lysine-specific demethylase-1 in gastric cancer. These findings indicate that lysine-specific demethylase-1 is an important oncogene in gastric cancer, and lysine-specific demethylase-1-mediated epigenetic repression of KLF2 plays a critical role in gastric cancer development and progression, which supports lysine-specific demethylase-1 as a potential therapeutic target in this disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app