Add like
Add dislike
Add to saved papers

Photon blockade via quantum interference in a strong coupling qubit-cavity system.

Optics Express 2017 March 21
In a coherently-driven nanocavity QED system, the one-photon blockade via quantum interference is investigated by the modified Lindblad master equation and without using the secular approximation as well. Based on the dressed bases of the Rabi Hamiltonian, a modified Lindblad master equation is obtained, which is valid for any arbitrary degree of the qubit-cavity interaction. It is found that the damping coefficients are very sensitive to interaction strength between the qubit and the cavity mode. How to enhance the one-photon blockade by using the quantum interference effect is discussed with the generalized second-order correlation function and the second-order perturbation in the five-state truncation of the Hilbert space. It is found that, under suitable pump or detection conditions, a strong one-photon blockade can be realized by completely eliminating the two-photon emission. Moreover, even for a strong cavity damping rate, there exhibits a large number of cavity photons by utilizing the quantum interference mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app