Add like
Add dislike
Add to saved papers

Near infrared spectro-interferometer using femtosecond laser written GLS embedded waveguides and nano-scatterers.

Optics Express 2017 April 4
Guided optics spectrometers can be essentially classified into two main families: based on Fourier transform or dispersion. In the first case, an interferogram generated inside an optical waveguide and containing the spectral information is sampled using spatially distributed nanodetectors. These scatter quasi-non-perturbingly light into the detector that is in contact with the waveguide, helping to reconstruct the stationary wave. A dedicated FFT processing is needed in order to recover the spectrum with high resolution but limited spectral range. Another way is to directly disperse the different wavelengths to different pixels, either introducing differential optical path in the same propagation plane (multiple Mach-Zehnder interferometers or Arrayed Waveguides Gratings), or using a periodic structure to perpendicularly extract the optical signal confined in a waveguide (photonic crystals or surface gratings), and by means of a relay optics, generate the spectrum on the Fourier plane of the lens, where the detector is placed. Following this second approach, we present a laser-fabricated high-resolution compact dispersive spectro-interferometer (R>2500, 30nm spectral range at λ = 1560nm), using four parallel waveguides that can provide up to three non-redundant interferometric combinations. The device is based on guided optics technology embedded in bulk optical glass. Ultrafast laser photoinscription with 3D laser index engineering in bulk chalcogenide Gallium Lanthanium Sulfide glass is utilized to fabricate large mode area waveguides in an evanescently-coupled hexagonal multicore array configuration, followed by subsequent realization of nanoscaled scattering centers via one dimensional nanovoids across the waveguide, written in a non-diffractive Bessel configuration. A simple relay optics, with limited optical aberrations, reimages the diffracted signal on the focal plane array, leading to a robust, easy to align instrument.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app