Add like
Add dislike
Add to saved papers

Submillisecond-response liquid crystal for high-resolution virtual reality displays.

Optics Express 2017 April 4
We report a vertically-aligned liquid crystal display (LCD) device with submillisecond response time, high transmittance, and low operation voltage. The top substrate has a common electrode, while the bottom substrate consists of hole-patterned fringing-field-switching (FFS) pixel electrodes. A negative dielectric anisotropy LC is employed. In the voltage-on state, the LC directors are reoriented by the fringing fields surrounding the hole area and by the longitudinal and fringe fields outside the hole area. After design optimization, we are able to achieve 85% peak transmittance under crossed circular polarizers. During the relaxation process, the standing walls exert a strong restoring force, leading to submillisecond gray-to-gray response time. Moreover, this device enables high resolution density because only one thin-film transistor per pixel is needed and the bottom FFS electrode has built-in capacitor. This device is particularly attractive for the emerging virtual reality displays.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app