Add like
Add dislike
Add to saved papers

Attosecond chirp effect on the transient absorption spectrum of laser-dressed helium atom.

Optics Express 2017 April 4
We theoretically investigate the attosecond transient absorption spectrum of helium atom in the presence of an infrared-dressed laser pulse upon scanning their relative delay, with the particular emphasis on the chirp effect of the attosecond pulse. By numerically solving the fully three-dimensional time-dependent Schrödinger equation, we identify the attoscecond chirp can induce the temporal shift of the absorption spectrogram along the delay axis. Additionally, it is found that the extent of the temporal shift is dependent on both the position of the absorption line and the infrared pulse wavelength, which is well confirmed and reproduced by a three-level model. Moreover, we demonstrate that the observed features can be quantitatively explained in terms of the indirect two-photon absorption processes through some virtual states. This effect might provide a way to measure the chirp of attosecond pulse in an all-optical way.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app