Add like
Add dislike
Add to saved papers

Electromagnetic field hugely enhanced by coupling to optical energy focusing structure.

Optics Express 2017 April 4
In this article, we introduce a new optical energy focusing structure consisting of a circular dielectric Bragg nanocavity and a circular metallic plasmonic lens. Via the hybridization of Bragg cavity modes and surface plasmon modes, optical energy is highly confined in the central region of the Bragg nanocavity under linearly polarized illumination. When either a bowtie nano-antenna (BNA) or a magnetic resonator (MR) is placed on this focusing structure, the energy can be high-efficiently coupled and focused into the BNA or MR. Simulations show that the electric field enhancement (|E|/|E<sub>0</sub>|) in the BNA and magnetic field enhancement (|H|/|H<sub>0</sub>|) in the MR can be more than 3000 and 200, respectively. This proposed hybrid dielectric-metallic structure opens a new avenue in energy focusing and transferring and provides opportunities for various applications, including single-molecule SERS, optical trapping, photolithography, fluorescent microscopy, magnetic sensors, etc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app