Add like
Add dislike
Add to saved papers

Recycled Products from Municipal Wastewater: Composition and Effects on Phosphorus Mobility in a Sandy Soil.

Recycled products from wastewater may contain high concentrations of phosphorus (P) and are thus promising alternative fertilizers. However, to better predict their P fertilizer efficiency and potential for P leaching, investigations on P forms and P mobility in soil are essential. In this study, different recycled products-an untreated sewage sludge ash (SSA), an HSO-digested SSA, four thermochemically treated SSAs (two Mg-SSAs and two Ca-SSAs), and struvite-were investigated using a combination of wet chemical methods and P K-edge X-ray absorption near-edge structure (XANES) spectroscopy concerning their composition and their effects on P sorption in a sandy soil in comparison to triple superphosphate. Most of the P in the SSAs was associated with Ca in stable P fractions. The lowest P values in labile fractions (HO-P, NaHCO-P) were found for the untreated SSA and struvite. However, the addition of struvite resulted in an immediate increase in the bioavailable P fractions and the degree of P saturation in soil after only 1 d of incubation. This suggests a high P fertilizer potential for struvite but also a risk of P losses. Among the SSAs, the two Mg-SSAs increased the bioavailable P fractions in soil the most, whereas the lowest values were measured after application of the untreated SSA. Our results demonstrate that chemical analyses of recycled P products may involve the risk of misjudging the fertilizer quality when performed alone, without considering the behavior of these products in soil.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app