Add like
Add dislike
Add to saved papers

Glibenclamide, a diabetic drug, prevents acute radiation induced liver injury of mice via up-regulating intracellular ROS and subsequently activating Akt-NF-κB pathway.

Oncotarget 2017 June 21
BACKGROUND: Acute radiation-induced liver injury is a limitation for hepatoma radiotherapy. Come so far the clinical treatments are insufficient. The effective, specific, low toxicity and novel drugs are in powerful need. Glibenclamide is a common hypoglycemic. Some studies have revealed its relation with intracellular reactive oxygen species, the crucial mediator to radiation injury. This study is aimed to investigate if glibenclamide could act on the acute radiation-induced liver injury.

RESULTS: Glibenclamide mitigated acute radiation-induced liver injury of mice, indicating as regression of hepatocellular edema, reduction of hepatic sinusoid, decline in serum ALP level and reduction of hepatocellular apoptosis. Pretreatment of glibenclamide reduced the radiosensitivity of NCTC-1469 cells. In mechanism, glibenclamide elevated cells membrane potential to up-regulate intracellular reactive oxygen species. The increased reactive oxygen species subsequently activated Akt-NF-κB pathway to promote survival of irradiated cells.

METHODS: BALB/C male mice were intraperitoneal injected with glibenclamide 1 hour before hepatic irradiation. At designed time points the livers were taken to make histological study and bloods were collected to measure serum transaminase. With/without glibenclamide pretreatment the irradiated NCTC-1469 cells were tested apoptosis, viability and proliferation. By western blotting the involved molecules were detected.

CONCLUSIONS: Glibenclamide, prevents acute radiation-induced liver injury of mice via up-regulating intracellular reactive oxygen species and subsequently activating Akt-NF-κB pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app