JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

To stress or not to stress: Physiological responses to tetrodotoxin in resistant gartersnakes vary by sex.

The activation of the hypothalamic pituitary adrenal (HPA) axis is one of the most important physiological processes in coping with any deviation in an organism's homeostasis. This activation and the secretion of glucocorticoids, such as corticosterone, allow organisms to cope with perturbations and return to optimal physiological functioning as quickly as possible. In this study, we examined the HPA axis activation in common gartersnakes (Thamnophis sirtalis) as a response to a natural toxin, tetrodotoxin (TTX). This neurotoxin is found in high levels in the Rough-skinned Newt (Taricha granulosa), which is a prey item for these snakes. To consume this toxic prey, these snakes have evolved variable resistance. We hypothesized that the more resistant individuals would show a lower HPA axis response than less resistant individuals, as measured by corticosterone (CORT) and bactericidal ability, which is a functional downstream measurement of CORT's activity. We determined "resistance level" for tetrodotoxin from each individual snake by determining the dose which reduced race speed by 50%. Individuals were injected them with an increasing amount of tetrodotoxin (10, 25, and 50 MAMUs) to determine this value. Thirty minutes after every injection, we gathered blood samples from each snake. Our results show that, while there were no significant differences among individual CORT levels in a dose-dependent manner, female snakes did have a larger stress response when compared to both males and juveniles. Different life-histories could explain why females were able to mount a higher HPA axis response. However, TTX had no downstream effects on bactericidal ability, although juveniles had consistently lower values than adults. Our research shows a possible dichotomy between how each sex manages tetrodotoxin and gives way for a more comprehensive analysis of tetrodotoxin in an ecological context.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app