Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Folding of proteins with a flavodoxin-like architecture.

FEBS Journal 2017 October
The flavodoxin-like fold is a protein architecture that can be traced back to the universal ancestor of the three kingdoms of life. Many proteins share this α-β parallel topology and hence it is highly relevant to illuminate how they fold. Here, we review experiments and simulations concerning the folding of flavodoxins and CheY-like proteins, which share the flavodoxin-like fold. These polypeptides tend to temporarily misfold during unassisted folding to their functionally active forms. This susceptibility to frustration is caused by the more rapid formation of an α-helix compared to a β-sheet, particularly when a parallel β-sheet is involved. As a result, flavodoxin-like proteins form intermediates that are off-pathway to native protein and several of these species are molten globules (MGs). Experiments suggest that the off-pathway species are of helical nature and that flavodoxin-like proteins have a nonconserved transition state that determines the rate of productive folding. Folding of flavodoxin from Azotobacter vinelandii has been investigated extensively, enabling a schematic construction of its folding energy landscape. It is the only flavodoxin-like protein of which cotranslational folding has been probed. New insights that emphasize differences between in vivo and in vitro folding energy landscapes are emerging: the ribosome modulates MG formation in nascent apoflavodoxin and forces this polypeptide toward the native state.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app