Add like
Add dislike
Add to saved papers

Probing the Effect of Salinity and pH on Surface Interactions between Air Bubbles and Hydrophobic Solids: Implications for Colloidal Assembly at Air/Water Interfaces.

In this work, a bubble probe atomic force microscope (AFM) was employed to quantify the interactions between two air bubbles and between an air bubble and an octadecyltrichlorosilane (OTS)-hydrophobized mica under various aqueous conditions. The key parameters (e.g., surface potentials, decay length of hydrophobic attraction) were obtained by analyzing the measured forces through a theoretical model based on Reynolds lubrication theory and an augmented Young-Laplace equation by including effect of disjoining pressure. The bubble-OTS hydrophobic attraction with a decay length of 1.0 nm was found to be independent of solution pH and salinity. These parameters were further used to predict the attachment of OTS-hydrophobized particles onto the air/water interface, demonstrating that particle attachment driven by hydrophobic attraction could be facilitated by suppressing electrical double-layer repulsion at low pH or high salinity condition. This facile methodology can be readily extended to quantify interactions of many other colloidal particles with gas/water and oil/water interfaces, with implications for colloidal assembly at different interfaces in many engineering applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app