JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Chemical inhibition reveals differential requirements of signaling pathways in kras V12 - and Myc-induced liver tumors in transgenic zebrafish.

Scientific Reports 2017 April 6
Previously we have generated inducible liver tumor models by transgenic expression of an oncogene and robust tumorigenesis can be rapidly induced by activation of the oncogene in both juvenile and adult fish. In the present study, we aimed at chemical intervention of tumorigenesis for understanding molecular pathways of tumorigenesis and for potential development of a chemical screening tool for anti-cancer drug discovery. Thus, we evaluated the roles of several major signaling pathways in krasV12 - or Myc-induced liver tumors by using several small molecule inhibitors: SU5402 and SU6668 for VEGF/FGF signaling; IWR1 and cardionogen 1 for Wnt signaling; and cyclopamine and Gant61 for Hedgehog signaling. Inhibition of VEGF/FGF signaling was found to deter both Myc- and krasV12 -induced liver tumorigenesis while suppression of Wnt signaling relaxed only Myc- but not krasV12 -induced liver tumorigenesis. Inhibiting Hedgehog signaling did not suppress either krasV12 or Myc-induced tumors. The suppression of liver tumorigenesis was accompanied with a decrease of cell proliferation, increase of apoptosis, distorted liver histology. Collectively, our observations suggested the requirement of VEGF/FGF signaling but not the hedgehog signaling in liver tumorigenesis in both transgenic fry. However, Wnt signaling appeared to be required for liver tumorigenesis only in Myc but not krasV12 transgenic zebrafish.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app