Add like
Add dislike
Add to saved papers

MCPIP1 contributes to the inflammatory response of UVB-treated keratinocytes.

BACKGROUND: Monocyte chemoattractant protein-1-induced protein-1 (MCPIP1), also known as regnase-1, negatively regulates many cellular processes including the cellular response to inflammatory agents, differentiation, viability, and proliferation. It possesses a PilT N-terminus (PIN) domain that is directly involved in regulating the stability of transcripts and miRNAs by recognizing stem loop structures and degrading them by endonucleolytic cleavage.

OBJECTIVE: We investigated the role of MCPIP1 in the response of human primary keratinocytes to UVB stress.

METHODS: Keratinocytes were treated with UVB, siRNA against MCPIP1, pharmacological inhibitors of signaling pathways, or subjected to control treatments. The mRNA and protein levels of MCPIP1 and MCPIP1-dependent changes gene expression were analyzed by quantitative (Q)-RT-PCRs and Western blots. Secretion of TNFα and IL-8 was determined by ELISA.

RESULTS: UVB treatment of keratinocytes induced upregulation of MCPIP1 at the mRNA level after 4-8h and at the protein level after 8-16h. MCPIP1 abundance depended on NF-κB activity. Using an siRNA strategy, we found that diminished MCPIP1 resulted in an up-regulation of transcripts coding for IL-8, TNFα, COX-2, and BCL-2, as well as an enhanced release of IL-8. Moreover, decreased phosphorylation of NF-κB and p38 signaling pathways were observed in addition to a slight up-regulation of ERK1/2 directly after UVB treatment. Twenty-four hours later, decreased phosphorylation was observed only for NF-κB and p38. Furthermore, in MCPIP1-suppressed cells, the levels of pro-apoptotic Puma, the phosphorylated form of p53 and the abundance of its target p21 as well as the activity of caspase 3 decreased, while the level of cyclin D1 increased.

CONCLUSION: MCPIP1 contributes to the UVB response of keratinocytes by altering metabolic and apoptotic processes and the release of inflammatory mediators.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app