Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Evaluation of gelatin-hyaluronic acid composite hydrogels for accelerating wound healing.

Excellent wound dressings maintain a warm and moist environment, thus accelerating wound healing. In this study, we cross-linked gelatin and hyaluronic acid with ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride in different ratios (gelatin/hyaluronic acid = 8:2, gelatin/hyaluronic acid = 5:5, gelatin/hyaluronic acid = 2:8), and explored the effects and mechanisms of gelatinhyaluronic acid hydrogels on wound healing. This was done by examining dressing properties, such as fluid uptake ability, water vapor transmission rate, and the rate of water evaporation. We further verified biological function by using in vitro and in vivo wound models. The hydrogels display appropriate fluid uptake ability and good water vapor transmission rate and rate of water evaporation all of which can provide an adequate moisture environment for wound healing. Cell cytotoxicity and proliferation tests show that the hydrogels have no cytotoxicity, furthermore, gelatin/hyaluronic acid = 8:2 hydrogels have the potential to promote cell proliferation. Animal wound models demonstrate that the hydrogels can effectively promote wound healing in vivo, in particular, the gelatin/hyaluronic acid = 8:2 group which promoted the most rapid healing. Accordingly, gelatin-hyaluronic acid dressings, especially the gelatin/hyaluronic acid = 8:2 hydrogels, have a promising outlook for clinical applications in wound healing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app