JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Dihydropteridine/Pteridine as a 2H + /2e - Redox Mediator for the Reduction of CO 2 to Methanol: A Computational Study.

Conflicting experimental results for the electrocatalytic reduction of CO2 to CH3 OH on a glassy carbon electrode by the 6,7-dimethyl-4-hydroxy-2-mercaptopteridine have been recently reported [ J. Am. Chem. Soc. 2014 , 136 , 14007 - 14010 , J. Am. Chem. Soc. 2016 , 138 , 1017 - 1021 ]. In this connection, we have used computational chemistry to examine the issue of this molecule's ability to act as a hydride donor to reduce CO2 . We first determined that the most thermodynamically stable tautomer of this aqueous compound is its oxothione form, termed here PTE. It is argued that this species electrochemically undergoes concerted 2H+ /2e- transfers to first form the kinetic product 5,8-dihydropteridine, followed by acid-catalyzed tautomerization to the thermodynamically more stable 7,8-dihydropteridine PTEH2 . While the overall conversion of CO2 to CH3 OH by three successive hydride and proton transfers from this most stable tautomer is computed to be exergonic by 5.1 kcal/mol, we predict high activation free energies (ΔG‡ HT ) of 29.0 and 29.7 kcal/mol for the homogeneous reductions of CO2 and its intermediary formic acid product by PTE/PTEH2 , respectively. These high barriers imply that PTE/PTEH2 is unable, by this mechanism, to homogeneously reduce CO2 on a time scale of hours at room temperature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app