JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Efficient Transcriptional Gene Repression by Type V-A CRISPR-Cpf1 from Eubacterium eligens.

Clustered regularly interspaced short palindromic repeats interference (CRISPRi) is an emerging technology for artificial gene regulation. Type II CRISPR-Cas endonuclease Cas9 is the most widely used protein for gene regulation with CRISPRi. Here, we present type V-A CRISPR-Cas endonuclease Cpf1-based CRISPRi. We constructed an l-rhamnose-inducible CRISPRi system with DNase-deactivated Cpf1 from Eubacterium eligens (EedCpf1) and compared its performance with catalytically deactivated Cas9 from Streptococcus pyogenes (SpdCas9). In contrast to SpdCas9, EedCpf1 showed stronger gene repression when it was targeted to the template strand than when it was targeted to the nontemplate strand of the 5' untranslated region or coding DNA sequences. EedCpf1 exhibited no strand bias when targeted to the promoter, and preferentially used the 5'-TTTV-3' (V = A, G, or C) protospacer adjacent motif. Multiplex repression of the EedCpf1-based CRISPRi system was demonstrated using episomal and chromosomal gene targets. Our findings will guide an efficient EedCpf1-mediated CRISPRi genetic control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app