Add like
Add dislike
Add to saved papers

Expression of the Antioxidative Enzyme Peroxiredoxin 2 in Multiple Sclerosis Lesions in Relation to Inflammation.

Multiple sclerosis is a chronic inflammatory disease of the central nervous system, characterized by demyelination and axonal damage as well as neuronal degeneration. Since oxygen-derived free radicals are an important factor leading to tissue damage in inflammatory multiple sclerosis (MS) lesions, research on antioxidative systems is essential to identify endogenous factors which can possibly counteract oxidative damage. As an important scavenging enzyme family, peroxiredoxins (PRDXs) play a crucial role in preventing oxidative damage; however little is known about their expression and function in MS lesions. In the present study we examined the expression of PRDX2 in white matter lesions of MS patients with long-standing, chronic disease. PRDX2 expression was investigated by immunohistochemistry in the context of oxidative stress and inflammation (determined by microglia/macrophage and T cell infiltration) in ten MS autopsy cases as well as seven control autopsy cases. PRDX2 was found to be upregulated in white matter MS lesions mainly in astrocytes, and its expression level was positively correlated with the degree of inflammation and oxidative stress. Our data suggest that PRDX2 expression contributes to the resistance of astrocytes against oxidative damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app