Add like
Add dislike
Add to saved papers

A MoS 2 -based coplanar neuron transistor for logic applications.

Nanotechnology 2017 May 27
The human brain is an extremely complex system of 1010 -1011 neurons. To construct brain-like neuromorphic hardware, the neuron unit should be implemented effectively. Here, we report a neuron transistor based on a MoS2 flake, which has summation and threshold functions similar to biological neurons and may act as a basic neuron unit in neuromorphic hardware. The neuron transistor is composed of a floating gate and two control gates. A heavily doped silicon substrate serves as the floating gate, while the two control gates are capacitively coupled with the floating gate. The neuron transistor can be well controlled by the two control gates individually or simultaneously. The drain current can be modulated by the input voltages at the control gates. While the current response of the neuron transistor has a large dependence on the magnitude of the input signal, it shows little dependence on the frequency of the input signal. To demonstrate the potential neuromorphic application of the neuron transistor, functions including abacus-like function, AND logic and OR logic are realized in the neuron transistor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app