JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Magneto-Dendrite Effect: Copper Electrodeposition under High Magnetic Field.

Scientific Reports 2017 April 5
Ionic vacancy is a by-product in electrochemical reaction, composed of polarized free space of the order of 0.1 nm with a 1 s lifetime, and playing key roles in nano-electrochemical processes. However, its chemical nature has not yet been clarified. In copper electrodeposition under a high magnetic field of 15 T, using a new electrode system called cyclotron magnetohydrodynamic (MHD) electrode (CMHDE) composed of a pair of concentric cylindrical electrodes, we have found an extraordinary dendritic growth with a drastic positive potential shift from hydrogen-gas evolution potential. Dendritic deposition is characterized by the co-deposition of hydrogen molecule, but such a positive potential shift makes hydrogen-gas evolution impossible. However, in the high magnetic field, instead of flat deposit, remarkable dendritic growth emerged. By examining the chemical nature of ionic vacancy, it was concluded that ionic vacancy works on the dendrite formation with the extraordinary potential shift.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app