JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Weakly-coupled quasi-1D helical modes in disordered 3D topological insulator quantum wires.

Scientific Reports 2017 April 5
Disorder remains a key limitation in the search for robust signatures of topological superconductivity in condensed matter. Whereas clean semiconducting quantum wires gave promising results discussed in terms of Majorana bound states, disorder makes the interpretation more complex. Quantum wires of 3D topological insulators offer a serious alternative due to their perfectly-transmitted mode. An important aspect to consider is the mixing of quasi-1D surface modes due to the strong degree of disorder typical for such materials. Here, we reveal that the energy broadening γ of such modes is much smaller than their energy spacing Δ, an unusual result for highly-disordered mesoscopic nanostructures. This is evidenced by non-universal conductance fluctuations in highly-doped and disordered Bi2Se3 and Bi2 Te3 nanowires. Theory shows that such a unique behavior is specific to spin-helical Dirac fermions with strong quantum confinement, which retain ballistic properties over an unusually large energy scale due to their spin texture. Our result confirms their potential to investigate topological superconductivity without ambiguity despite strong disorder.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app