Add like
Add dislike
Add to saved papers

Docking-based design and synthesis of galantamine-camphane hybrids as inhibitors of acetylcholinesterase.

Galantamine (GAL) as an acetylcholinesterase inhibitor (AChEI) is among the main drugs approved for the treatment of Alzheimer's disease. It fits perfectly into acetylcholinesterase (AChE) binding gorge, but it is too short to fill it. The amyloid beta (Aβ) peptide binds in the peripheral anionic site (PAS) at the entrance of the binding gorge of AChE and initiates the formation of amyloid plaques. The blockade of PAS prevents from AChE-induced Aβ aggregation. In this study, we describe the design of a series of galantamine-camphane hybrids as AChEIs. Camphane (CAM) is a bulky fragment that disposes well on the wide gorge entrance. The designed hybrids have linkers of different length. They were docked into AChE, and the highest scored compounds were synthesized and tested for AChE inhibitory activity. Some of the novel hybrids showed 191- and 369-fold better inhibition than GAL. The CAM fragment of the best binders fits in the same region, proximal to PAS, where the Ω-loop of Aβ binds to AChE. The hybrids cross blood-brain barrier by passive diffusion and are non-neurotoxic at the inhibitory concentrations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app