Add like
Add dislike
Add to saved papers

A Molecular Propeller with Three Nanohoop Blades: Synthesis, Characterization, and Solid-State Packing.

Nanoscale carbon-rich molecular architectures are not only aesthetically appealing but also of practical importance for energy and biomedical technologies. Herein, we report the synthesis of cyclic-oligophenylene-based nanopropeller 1 by using an efficient synthon strategy involving sequential intramolecular bisboronate homocoupling and reductive aromatization by H2 SnCl4 . The nanopropeller molecules pack into a layered hexagonal lattice featuring long-ranged nano-sized channels and a total guest-accessible volume of 48 %, as revealed by X-ray diffraction studies. We suggest that such a solid-state arrangement is determined by the interplay between the propeller architecture and the intermolecular van der Waals interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app