Add like
Add dislike
Add to saved papers

Morphological alterations in the hippocampus of the Ts65Dn mouse model for Down Syndrome correlate with structural plasticity markers.

Down syndrome (DS) is the most common chromosomal aneuploidy. Although trisomy on chromosome 21 can display variable phenotypes, there is a common feature among all DS individuals: the presence of intellectual disability. This condition is partially attributed to abnormalities found in the hippocampus of individuals with DS and in the murine model for DS, Ts65Dn. To check if all hippocampal areas were equally affected in 4-5 month adult Ts65Dn mice, we analysed the morphology of dentate gyrus granule cells and cornu ammonis pyramidal neurons using Sholl method on Golgi-Cox impregnated neurons. Structural plasticity has been analysed using immunohistochemistry for plasticity molecules followed by densitometric analysis (Brain Derived Neurotrophic Factor (BDNF), Polysialylated form of the Neural Cell Adhesion Molecule (PSA-NCAM) and the Growth Associated Protein 43 (GAP43)). We observed an impairment in the dendritic arborisation of granule cells, but not in the pyramidal neurons in the Ts65Dn mice. When we analysed the expression of molecules related to structural plasticity in trisomic mouse hippocampus, we observed a reduction in the expression of BDNF and PSA-NCAM, and an increment in the expression of GAP43. These alterations were restricted to the regions related to dentate granule cells suggesting an interrelation. Therefore the impairment in dendritic arborisation and molecular plasticity is not a general feature of all Down syndrome principal neurons. Pharmacological manipulations of the levels of plasticity molecules could provide a way to restore granule cell morphology and function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app