Add like
Add dislike
Add to saved papers

Modulation of Protein Fragmentation Through Carbamylation of Primary Amines.

We evaluate the impact of carbamylation of the primary amines of the side-chains of Lys and the N-termini on the fragmentation of intact protein ions and the chromatographic properties of a mixture of E. coli ribosomal proteins. The fragmentation patterns of the six unmodified and carbamylated proteins obtained by higher energy collision dissociation (HCD) and ultraviolet photodissociation (UVPD) were compared. Carbamylation significantly reduced the total number of protons retained by the protein owing to the conversion of basic primary amines to non-basic carbamates. Carbamylation caused a significant negative impact on fragmentation of the protein by HCD (i.e., reduced sequence coverage and fewer diagnostic fragment ions) consistent with the mobile proton model, which correlates peptide fragmentation with charge distribution and the opportunity for charge-directed pathways. In addition, fragmentation was enhanced near the N- and C-termini upon HCD of carbamylated proteins. For LCMS/MS analysis of E. coli ribosomal proteins, the retention times increased by 16 min on average upon carbamylation, an outcome attributed to the increased hydrophobicity of the proteins after carbamylation. As noted for both the six model proteins and the ribosomal proteins, carbamylation had relatively little impact on the distribution or types of fragment ions product by UVPD, supporting the proposition that the mechanism of UVPD for intact proteins does not reflect the mobile proton model. Graphical Abstract ᅟ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app