Add like
Add dislike
Add to saved papers

Differential Mobility Spectrometry for Improved Selectivity in Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometry Analysis of Paralytic Shellfish Toxins.

Paralytic shellfish toxins (PSTs) are neurotoxins produced by dinoflagellates and cyanobacteria that cause paralytic shellfish poisoning in humans. PST quantitation by LC-MS is challenging because of their high polarity, lability as gas-phase ions, and large number of potentially interfering analogues. Differential mobility spectrometry (DMS) has the potential to improve the performance of LC-MS methods for PSTs in terms of selectivity and limits of detection. This work describes a comprehensive investigation of the separation of 16 regulated PSTs by DMS and the development of highly selective LC-DMS-MS methods for PST quantitation. The effects of all DMS parameters on the separation of PSTs from one another were first investigated in detail. The labile nature of 11α-gonyautoxin epimers gave unique insight into fragmentation of labile analytes before, during, and after the DMS analyzer. Two sets of DMS parameters were identified that either optimized the resolution of PSTs from one another or transmitted them at a limited number of compensation voltage (CV) values corresponding to structural subclasses. These were used to develop multidimensional LC-DMS-MS/MS methods using existing HILIC-MS/MS parameters. In both cases, improved selectivity was observed when using DMS, and the quantitative capabilities of a rapid UPLC-DMS-MS/MS method were evaluated. Limits of detection of the developed method were similar to those without DMS, and differences were highly analyte-dependant. Analysis of shellfish matrix reference materials showed good agreement with established methods. The developed methods will be useful in cases where specific matrix interferences are encountered in the LC-MS/MS analysis of PSTs in complex biological samples. Graphical Abstract ᅟ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app