Add like
Add dislike
Add to saved papers

Blood flow can signal during angiogenesis not only through mechanotransduction, but also by affecting growth factor distribution.

Angiogenesis 2017 August
Growth factors, such as VEGF, promote the sprouting of new blood vessels. Growth factors are generally produced far from the endothelium, and the transport of these proteins is often assumed to occur through diffusion. When sprouting occurs in a perfused vascular bed, however, interstitial flow is present that can modify protein transport. We recently developed a technique to analyze flow dynamics and vascular remodeling simultaneously in avian embryos. In this study, we extend our technique to model interstitial flow through the porous matrix of the mesenchymal tissue and use this to investigate how flow in the blood vessels affects the distribution of growth factors in the mesenchyme, using VEGF as a prototypical angiogenic molecule. We find that flow controls sprouting location and elongation, both through the direct action of mechanical force and through indirect effects on growth factor distribution. Most importantly, we find that the distribution of VEGF is regulated by interstitial flow, and the effect of diffusion of VEGF is negligible.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app