Add like
Add dislike
Add to saved papers

Effects of Transplanted Human Cord Blood-Mononuclear Cells on Pulmonary Hypertension in Immunodeficient Mice and Their Distribution.

OBJECTIVES: To investigate the effects of human umbilical cord blood-derived mononuclear cell (hUCB-MNC) transplantation on pulmonary hypertension (PH) induced by monocrotaline (MCT) in immunodeficient mice and their distribution.

METHODS: MCT was administered to BALB/c Slc-nu/nu mice, and PH was induced in mice 4 weeks later. Fresh hUCB-MNCs harvested from a human donor after her delivery were injected intravenously into those PH mice. The medial thickness of pulmonary arterioles, ratio of right ventricular to septum plus left ventricular weight (RV/S+LV), and ratio of acceleration time to ejection time of pulmonary blood flow waveform (AT/ET) were determined 4 weeks after hUCB-MNC transplantation. To reveal the incorporation into the lung, CMTMR-labeled hUCB-MNCs were observed in the lung by fluorescent microscopy. DiR-labeled hUCB-MNCs were detected in the lung and other organs by bioluminescence images.

RESULTS: Medial thickness, RV/S+LV and AT/ET were significantly improved 4 weeks after hUCB-MNC transplantation compared with those in mice without hUCB-MNC transplantation. CMTMR-positive hUCB-MNCs were observed in the lung 3 hours after transplantation. Bioluminescence signals were detected more strongly in the lung than in other organs for 24 hours after transplantation.

CONCLUSIONS: The results indicate that hUCB-MNCs are incorporated into the lung early after hUCB-MNC transplantation and improve MCT-induced PH. J. Med. Invest. 64: 43-49, February, 2017.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app