Add like
Add dislike
Add to saved papers

Extracellular matrix mimicking scaffold promotes osteogenic stem cell differentiation: A new approach in osteoporosis research.

BACKGROUND: Osteoporosis is a common metabolic disease, with mesenchymal stem cells discussed to play an important role in its pathomechanism. For in vitro osteoporosis studies, selection of adequate culture conditions is mandatory so as to preserve cell properties as far as possible. A suitable cell culture surface would ideally provide reproducible experimental conditions by resembling those in-vivo.

OBJECTIVE: Generating an improved growth surface for osteogenic differentiation of human bone marrow derived mesenchymal stem cells (hBMSCs).

METHODS: We modified electrospun gelatine meshes with hydroxyapatite nanopowder. The potential beneficial impact of the ensuing culture conditions were evaluated by cultivating and comparing the growth of cells from osteoporotic and non-osteoporotic donors on either hydroxyapatite-gelatine (HA) meshes, pure gelatine meshes, or 2D standard tissue culture surfaces.

RESULTS: After 21 days of differentiation, cells grown on pure or HA-gelatine meshes showed significantly higher mineralization levels compared to cells cultured in standard conditions. The amount of mineralization varied considerably in hBMSC cultures of individual patients but showed no significant difference between stem cells obtained from osteoporotic or non-osteoporotic donors.

CONCLUSIONS: Overall, these results indicate that the use of HA-gelatine meshes as growth surfaces may serve as a valuable tool for cultivation and differentiation of mesenchymal stem cells along the osteogenic lineage, facilitating future research on osteoporosis and related issues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app