Add like
Add dislike
Add to saved papers

The relative effect of particles and turbulence on acoustic scattering from deep sea hydrothermal vent plumes revisited.

The relative importance of suspended particles and turbulence as backscattering mechanisms within a hydrothermal plume located on the Endeavour Segment of the Juan de Fuca Ridge is determined by comparing acoustic backscatter measured by the Cabled Observatory Vent Imaging Sonar (COVIS) with model calculations based on in situ samples of particles suspended within the plume. Analysis of plume samples yields estimates of the mass concentration and size distribution of particles, which are used to quantify their contribution to acoustic backscatter. The result shows negligible effects of plume particles on acoustic backscatter within the initial 10-m rise of the plume. This suggests turbulence-induced temperature fluctuations are the dominant backscattering mechanism within lower levels of the plume. Furthermore, inversion of the observed acoustic backscatter for the standard deviation of temperature within the plume yields a reasonable match with the in situ temperature measurements made by a conductivity-temperature-depth instrument. This finding shows that turbulence-induced temperature fluctuations are the dominant backscattering mechanism and demonstrates the potential of using acoustic backscatter as a remote-sensing tool to measure the temperature variability within a hydrothermal plume.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app