Journal Article
Randomized Controlled Trial
Add like
Add dislike
Add to saved papers

Angiogenic effects of low-intensity cathodal direct current on ischemic diabetic foot ulcers: A randomized controlled trial.

AIMS: This study investigated the effect of low-intensity cathodal direct current (CDC) of electrical stimulation (ES) on the release of hypoxic inducible factor-1α (HIF-1α), nitric oxide (NO), vascular endothelial growth factor (VEGF), and soluble VEGF receptor-2 (sVEGFR-2) in the wound fluid of ischemic diabetic foot ulcers (DFUs).

METHODS: This study was a randomized, single-blind, placebo-controlled trial. Thirty type 2 diabetes patients with ischemic foot ulcerations were randomly assigned to receive either low-intensity CDC at sensory threshold (ES group, n=15) or placebo treatment (control group, n=15) for 1h/day, 3days/week, for 4weeks (12 sessions). After debridement during the first and twelfth treatment sessions, wound fluid was collected before and after ES application to determine the levels of HIF-1α, NO, VEGF, and sVEGFR-2. Wound surface area (WSA) was measured at the first, sixth, and twelfth sessions.

RESULTS: At the first session, after ES application, wound-fluid levels of HIF-1α were significantly increased (+61.98pg/mL) compared to the control group (-3.85pg/mL, P=0.01). After ES application at the first and twelfth sessions, wound-fluid levels of VEGF were also significantly increased (+36.77 and +39.57pg/mL, respectively) compared to the control group (+4.15 and +0.15pg/mL, P=0.007 and P=0.019, respectively). There was no significant effect on NO and sVEGFR-2 levels between the groups.

CONCLUSIONS: Low-intensity CDC has positive effects on the release of HIF-1α and VEGF in the wound area of ischemic DFUs. Furthermore, our results suggest that applying ES to ischemic DFUs can be a promising way to promote angiogenesis and to achieve better outcomes in diabetic wound healing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app