Add like
Add dislike
Add to saved papers

Surface-imprinted magnetic nanoparticles for the selective enrichment and fast separation of fluoroquinolones in human serum.

Surface enrofloxacin-imprinted magnetic nanoparticles were prepared for the selective recognition and fast separation of fluoroquinolones in human serum by surface-initiated reversible addition fragmentation chain transfer polymerization. The surface morphology and imprinted behavior were investigated and optimized. The living/controlled nature of reversible addition-fragmentation chain transfer polymerization reaction allowed the successful construction of well-defined imprinted polymer layer outside the Fe3 O4 core. Such molecularly imprinted polymers exhibited superparamagnetic properties and specific recognition toward fluoroquinolones. Combined with reversed-phase high-performance liquid chromatography, the prepared molecularly imprinted polymers were used for the selective enrichment and analysis of fluoroquinolones in human serum samples. The recoveries of four fluoroquinolones were 86.8-95.3% with relative standard deviations of 2.0-6.8% (n = 3). Such magnetic molecularly imprinted polymers have great prospects in the separation and enrichment of trace analysts in complex biological samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app