Add like
Add dislike
Add to saved papers

Spherical Polyelectrolyte Brushes as a Novel Platform for Paramagnetic Relaxation Enhancement and Passive Tumor Targeting.

A novel platform for the development of highly efficient magnetic resonance imaging (MRI) contrast agents has been demonstrated. New contrast agents are designed and produced through electrostatic self-assembly of cationic gadolinium(III) complexes onto anionic spherical polyelectrolyte brushes (SPB). The structurally well-defined SPB are composed of polystyrene core and polyacrylic acid brush layer, where numerous binding sites and confined microenvironments are available for the embedment of the gadolinium(III) contrast agents. Both in vitro and in vivo experiments show excellent biocompatibility and relaxometric performance of these SPB-based gadolinium hybrid materials. The enhanced relaxivity value is up to 86.2 mM-1 s-1 per Gd, a remarkably high record value at 1.5 T magnetic field. In vivo imaging displays a prolonged blood circulation time and massive accumulation of the contrast agents at the tumor region due to the enhanced permeability and retention effect. The SPB-based gadolinium hybrid materials not only broaden the horizons of new MRI contrast agents, but also have a great potential for tumor diagnosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app