Add like
Add dislike
Add to saved papers

Peptide-Coated Semiconductor Polymer Dots for Stem Cells Labeling and Tracking.

Stem cell therapy is rapidly moving toward translation to clinical application. To elucidate the therapeutic effect, a robust method that allows tracking of the stem cells over an extended period of time is required. Herein, semiconducting polymer dots (Pdots) are demonstrated for their use in bright labeling and tracking of human mesenchymal stem cells (MSCs) in vitro and in vivo. The Pdots coated with a cell-penetrating peptide (R8) showed remarkable endocytic uptake efficiency that was 15 times higher than that of carboxyl Pdots and more than 200 times than that of bare Pdots. The Pdot-labeled MSCs can be traced for 15 generations in vitro and tracked over 2 weeks in vivo after subcutaneous transplantation. The labeled MSCs administered through the tail vein were preferentially accumulated in the lung; this was distinctive from the distribution of free Pdots, which were primarily distributed in the liver. Based on the properties of bright labeling, excellent tracking capability, and great biocompatibility, the Pdots will be valuable in the applications of stem cell biology and regenerative medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app