Add like
Add dislike
Add to saved papers

Enhancing the Performance of Stretchable Conductors for E-Textiles by Controlled Ink Permeation.

Delivery of electronic functionality to the human body using e-textiles is important for realizing the future of wearable electronics. Printing is a promising process for large scale manufacturing of e-textile since it enables arbitrary patterns using a simple and inexpensive process. However, conductive inks printed atop of textile are vulnerable to cracking because of the deformable and porous structure of textiles. The authors develop a mechanically and electrically robust wiring by controlling ink permeation in the structure of textile. This is done by adjusting the ink's solvent. The use of butyl carbitol acetate, with its low vapor pressure and boiling point, enables deep permeation into the textile. The sheet resistance is initially 0.06 Ω sq-1 , and the resistance increasing only 70 times after stretching to 450% strain. Finally, a four-channel electromyogram (EMG) monitoring garment is demonstrated to show the potential of a large-scale e-textile device for health care and sports.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app