Add like
Add dislike
Add to saved papers

High Mobility 2D Palladium Diselenide Field-Effect Transistors with Tunable Ambipolar Characteristics.

Due to the intriguing optical and electronic properties, 2D materials have attracted a lot of interest for the electronic and optoelectronic applications. Identifying new promising 2D materials will be rewarding toward the development of next generation 2D electronics. Here, palladium diselenide (PdSe2 ), a noble-transition metal dichalcogenide (TMDC), is introduced as a promising high mobility 2D material into the fast growing 2D community. Field-effect transistors (FETs) based on ultrathin PdSe2 show intrinsic ambipolar characteristic. The polarity of the FET can be tuned. After vacuum annealing, the authors find PdSe2 to exhibit electron-dominated transport with high mobility (µe (max) = 216 cm2 V-1 s-1 ) and on/off ratio up to 103 . Hole-dominated-transport PdSe2 can be obtained by molecular doping using F4 -TCNQ. This pioneer work on PdSe2 will spark interests in the less explored regime of noble-TMDCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app