Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

The CRISPR-Cas9 system in Neisseria spp.

Bacteria and archaea possess numerous defense systems to combat viral infections and other mobile genetic elements. Uniquely among these, CRISPR-Cas (clustered, regularly interspaced short palindromic repeats-CRISPR associated) provides adaptive genetic interference against foreign nucleic acids. Here we review recent advances on the CRISPR-Cas9 system in Neisseria spp, with a focus on its biological functions in genetic transfer, its mechanistic features that establish new paradigms and its technological applications in eukaryotic genome engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app